Tiny, Colourful Particles Offer Hope for Drought-Stricken Crops

Researchers at Cornell University have developed nanoscale sensors that help breeders select water-efficient crops, enhancing their resilience against droughts caused by climate change.

Autor*in Christian Nathler, 05.31.23

Translation Sarah-Indra Jungblut:

It’s survival of the fittest for the crops of the future. 

With climate change increasing the frequency and severity of droughts, crops will need to fight through longer periods of water scarcity. One solution is to breed crops that can efficiently manage water in a hot and dry climate.

The first step is to understand which crops make the most of the water available to them, and how. To achieve this, researchers at Cornell University have developed a nanoscale sensor called AquaDust which offers valuable insights into water flow within plants.

AquaDust utilises tiny fluorescent dyes to track water movement within plant tissue. This innovative, non-invasive approach enables breeders and biologists to assess the health of crops at a microscopic level. 

Researchers injected hydrogel-based nanoparticles into maize leaves to monitor water availability. The nanoparticles expanded or contracted based on water content, causing the dyes to emit fluorescence at different wavelengths. The wavelengths are then measured with a spectrometer and converted into water-potential measurements without harming the plants.

By gaining a comprehensive understanding of water flow across various leaf tissues, this technique provides valuable insights into pivotal biological processes such as photosynthesis, carbon dioxide uptake and water vapour release. From there, researchers can develop crops that exhibit improved water management capabilities, addressing the challenges posed by water scarcity.

In a best-case scenario for the technology, workers in fields or greenhouses may be able to spray AquaDust over a field, allowing a multispectral camera to measure water potential across hundreds of plants quickly.

“Using any sort of remote sensing technology—in this case they’re using nanosensors—is an enormous leap forward,” said Irwin Goldman, professor of horticulture at the University of Wisconsin, Madison. “My sense of this technology is that it is the future, really.”

Part of a holistic effort to develop drought-resilient ecosystems

AquaDust must overcome several challenges before it can be deployed in real-world agricultural settings. First, the solution injected into the plants contains water, which needs to evaporate before accurate measurements can be taken. This waiting period delays the process and makes it inefficient for large-scale use.

Second, AquaDust is primarily being used as a research tool to gain insights into plant biology and behavior. Its application and readout methods require further refinement if breeders and farmers are to rely on it for commercial or widespread practical applications.

Finally, identifying water-loss resistant plants and their associated genes, and subsequently pairing them with desirable traits like nutrition and flavour, is a lengthy and complex process.

Nevertheless, non-invasively monitoring water availability within plants represents a remarkable advancement in our understanding of crop resilience. With further development, AquaDust is poised to play a key role – alongside solutions such as seawater greenhouses and irrigation from thin air – in a holistic, science-driven effort to cope with a drier planet. 

Harnessing Digitalisation to Protect Mediterranean Great White Sharks

Among the ocean’s predators, the great white shark is possibly the most feared. Yet, despite its notoriety, the Mediterranean white shark population remains shrouded in mystery. 

Open Source Platform LiteFarm Supports Sustainable Farmers

Large corporations dominate the provision of digital services in agriculture. However, open-source platform LiteFarm focuses on cooperation in making agriculture more sustainable.

Fraunhofer UMSICHT (Vertikaler Anbau in der SUSKULT-Pilotanlage)
Fraunhofer Umsicht
Agriculture as a Cycle: Growing Produce With Nutrients From the SUSKULT Sewage Treatment Plant

With SUSKULT, plants don't need soil - they're fed by sewage treatment plants. This hydroponic system is breaking completely new ground.

“Agriculture Can Do So Much More Than Produce Food”: We Interview Sonoko Bellingrath-Kimura

Agriculture primarily produces food, but can also help to protect the climate. We spoke to Prof. Dr Sonoko Bellingrath-Kimura about how digitalisation can assist.

Turning Electronic Waste Into Gold with Whey Protein

Electronic waste is not only resource intensive, but, recycling it is also inefficient. Could this common food byproduct improve the process, and is this really the best solution, after all?

Can Sensors, Cameras and “Big Data” on the High Seas Make Fishing More Sustainable?

Modern sensors and data processing can make fishing more sustainable. However, new technologies such as SUSTUNTECH run the risk of having the opposite effect.

QTrees dashboard
©
Pilot Project QTrees Harnesses AI to Protect Berlin’s Urban Greenery Amid Climate Change

QTrees, a Berlin-based Machine Learning-assisted project, is hoping to protect the city's long-suffering urban trees.

Leading the German Baking Trade Into the Future With BackDigital

BackDigital's overall digital strategy is adapting the bakery trade to emerging challenges - while at the same time preserving tradition.