Tiny, Colourful Particles Offer Hope for Drought-Stricken Crops

Researchers at Cornell University have developed nanoscale sensors that help breeders select water-efficient crops, enhancing their resilience against droughts caused by climate change.

Author Christian Nathler, 05.31.23

Translation Sarah-Indra Jungblut:

It’s survival of the fittest for the crops of the future. 

With climate change increasing the frequency and severity of droughts, crops will need to fight through longer periods of water scarcity. One solution is to breed crops that can efficiently manage water in a hot and dry climate.

The first step is to understand which crops make the most of the water available to them, and how. To achieve this, researchers at Cornell University have developed a nanoscale sensor called AquaDust which offers valuable insights into water flow within plants.

AquaDust utilises tiny fluorescent dyes to track water movement within plant tissue. This innovative, non-invasive approach enables breeders and biologists to assess the health of crops at a microscopic level. 

Researchers injected hydrogel-based nanoparticles into maize leaves to monitor water availability. The nanoparticles expanded or contracted based on water content, causing the dyes to emit fluorescence at different wavelengths. The wavelengths are then measured with a spectrometer and converted into water-potential measurements without harming the plants.

By gaining a comprehensive understanding of water flow across various leaf tissues, this technique provides valuable insights into pivotal biological processes such as photosynthesis, carbon dioxide uptake and water vapour release. From there, researchers can develop crops that exhibit improved water management capabilities, addressing the challenges posed by water scarcity.

In a best-case scenario for the technology, workers in fields or greenhouses may be able to spray AquaDust over a field, allowing a multispectral camera to measure water potential across hundreds of plants quickly.

“Using any sort of remote sensing technology—in this case they’re using nanosensors—is an enormous leap forward,” said Irwin Goldman, professor of horticulture at the University of Wisconsin, Madison. “My sense of this technology is that it is the future, really.”

Part of a holistic effort to develop drought-resilient ecosystems

AquaDust must overcome several challenges before it can be deployed in real-world agricultural settings. First, the solution injected into the plants contains water, which needs to evaporate before accurate measurements can be taken. This waiting period delays the process and makes it inefficient for large-scale use.

Second, AquaDust is primarily being used as a research tool to gain insights into plant biology and behavior. Its application and readout methods require further refinement if breeders and farmers are to rely on it for commercial or widespread practical applications.

Finally, identifying water-loss resistant plants and their associated genes, and subsequently pairing them with desirable traits like nutrition and flavour, is a lengthy and complex process.

Nevertheless, non-invasively monitoring water availability within plants represents a remarkable advancement in our understanding of crop resilience. With further development, AquaDust is poised to play a key role – alongside solutions such as seawater greenhouses and irrigation from thin air – in a holistic, science-driven effort to cope with a drier planet. 

A New Process Makes the Lithium Extraction Cheaper and More Sustainable

A new process of lithium extraction filters lithium out of brines more efficiently - and is less harmful to the environment.

Are Virtual Servers Sustainable? Open Source Tool “Aether” Measures Their Energy Consumption

How do you measure the power consumption of virtual services? “Re:cinq” has developed open source tool "aether" for precisely this purpose.

Symolbild: Nachhaltige Künstliche Intelligenz
Torge Peters
How Can the Energy Guzzler That’s AI Become More Sustainable? Interview With Friederike Rohde (Iöw)

Artificial intelligence has a large CO2 footprint. Renewable energies alone will not solve the problem, says Friederike Rohde.

Logo Digitaler Datenputz
© Corporate Digital Responsibility Initiative
Tidying Up With the “Digital Data Clean-Up”: The Campaign Shows How Digital Working Can Become More Sustainable

The digital data clean-up helps employees to clear out digital rubbish. The campaign takes place 16-27 September: RESET is taking part!

Will Digital Product Passports Change the Game in Fashion?

Digital Product Passports will tell consumers about the sustainability of their clothes. Will they reduce the industry’s carbon emissions?

How “Perplant Farming” Supports Environmentally Friendly Cultivation With Farm Robots and AI

AI and farm robots are opening up new possibilities in agriculture - environmentally friendly weed and pest control is one of them.

Satellites Can Now Detect Marine Litter From Space

New research shows how satellites can be used to detect marine litter from space and create a map of the waste in our oceans.

Green Electricity on the High Seas: Parkwind Tests First Offshore Charging Station for E-Boats

Offshore operator Parkwind shows how electric boats can also be charged on the high seas with an offshore charging station. Is this the key to long distance electric shipping?