Sustainable Biocomposite Material Component Creates Potential for Healthy Indoor Climates

Researchers searching for construction materials that address both climate and health challenges have stumbled upon a new, exciting biocomposite material.

Author Lana O'Sullivan, 01.22.25

Translation Benjamin Lucks:

When we think of sustainable building, reducing carbon emissions often takes centre stage. But, the environmental impact of materials is only part of the story. The buildings we live and work in also shape our health and well-being. Air quality, moisture levels, light and comfort all impact our daily lives more than we think. Studies suggest that indoor concentrations of air pollutants from things such as home products and poor ventilation are increasing and could be causing significant health issues such as respiratory diseases, heart disease and cognitive deficits.

Meanwhile, the building sector is one of the largest consumers of energy in Europe. Could the future of construction involve materials that address both climate and health challenges, and can the industry adapt quickly enough to make these innovations the norm fast enough for Europe to make good on its climate commitments?

Researchers at ETH Zurich believe so. They’ve developed a biocomposite material that combines clay with waste fibres to create a building component that’s not only eco-friendly but also improves indoor air quality. The building structure’s porous material naturally regulates humidity by absorbing moisture when levels are high. It then releases the moisture when humidity levels are too low, eliminating the need for energy-intensive climate control systems and reducing the risk of mould—a common problem in many more modern, airtight buildings.

A biocomposite material shifting towards circular design

Beyond improving indoor environments, this material embraces a circular approach. It’s designed to be easily disassembled and reused, ensuring that components can be repurposed rather than discarded at the end of their lifecycle. This marks a significant departure from traditional construction practices, which are estimated to reach 2.2 billion tons globally by 2025.

Magda Posani is Assistant Professor of Building Physics at Aalto University and led the investigation into the hygroscopic properties of the material at ETH Zurich. She highlighted the potential impact of such innovations:

“We were able to prove with numerical simulations that the building elements can significantly reduce the humidity in heavily used interior spaces.”

Can sustainable materials keep pace with growing demand?

While innovations like this biocomposite material are promising, they raise questions about scalability and adoption. Construction is a fast-moving industry, and integrating new materials often requires overcoming cost barriers, technical challenges and regulatory hurdles. At RESET, we’ve previously written about 3D printing projects promising a sustainable dimension to modern life. However, just like many construction projects themselves, progress has been slow. We argue that what’s needed is change at a policy level.

Sustainability in construction isn’t just about creating better materials. It’s about changing the systems that support them—shifting to policies that prioritise environmental and human health over short-term profits.

There have been some foundations laid in this area. In 2020, The European Commission adopted the new circular economy action plan (CEAP) which targeted how products are designed in order to promote circular economy processes, ensuring “waste is prevented and the resources used are kept in the EU economy for as long as possible.”

As cities expand and the demand for housing grows, solutions like biocomposite materials offer a glimpse into a future where buildings are designed to support both the planet and the people who live on it.

© Kunaljit Chadha / ETH Zurich - Gramazio Kohler Research, Chair of Sustainable Construction and Robotic Systems Lab
Impact Printing: Will We Print Our Houses From Clay One Day?

Impact printing produces houses from clay with minimal composite materials. Are they an alternative to highly emitting concrete buildings?

©
How Can Digitalisation Help Decarbonise the Building Sector?

Major transformations are needed to achieve the climate targets in the building sector. Here we provide an overview of the role digital technologies play in the industry.

© TRIQBRIQ AG
Giant Lego Made From Damaged Wood: How Triqbriq Could Revolutionise Timber Construction

What if there was a building material that was environmentally friendly, could be processed quickly and could also be completely deconstructed without leaving any residue? This idea is no longer utopian, as these new "briqs" prove.

Intelligent Planning of Sustainable Buildings and Neighbourhoods With BIM

BIM has a wide range of potential applications in the construction industry. In Giessen, the system is being used to realise the EnEff:Stadt FlexQuartier energy efficiency district.

©
Old Becomes New: Concular’s Mission to Digitise Circular Construction

Concular, a company dedicated to advancing circular construction through digital innovations, is introducing key elements such as a building resource passport, a fresh DIN standard, and an online store for reclaimed building materials. This approach not only offers cost savings but also contributes significantly to sustainability.

©
How Software is Helping Achieve Climate-Neutrality in Buildings

Construction, materials, and type of heating all play a crucial role in determining the amount of CO2 emissions a building will generate over its lifespan. CAALA's software can accurately calculate and optimise these factors from the outset.

EnergieCheckpoint: Visualising the Energy Efficiency of Berlin’s Public Buildings

By law, Berlin's operator of public buildings is required to report energy consumption data for each individual building. The initiative EnergieCheckpoint visualises the data and seeks to make it actionable.

Metr: How Digital Solutions Are Driving Down Real Estate Costs While Improving Sustainability

Could digital solutions be at the forefront of the construction industry's mammoth carbon footprint? Experts agree - they have potential. But the answer to making our buildings "smart" could be more complicated.