New Denser-Than-Water Fluid Could Make Pumped Hydro Cheaper and More Efficient

Can you have hydro storage without water? A British start-up is looking to open up the potential of pumped hydro renewable energy storage.

Author Mark Newton, 03.13.23

Translation Luisa Ilse:

For renewable energies to continue to play an important role in combating the climate catastrophe, more efficient and affordable renewable energy storage solutions need to be developed.

There are already a plethora of different approaches to storing renewable power. These include storing energy as heat in stones or salt, within large flywheels and by lifting weights within disused mine shafts. However, the most convenient source of energy storage still seems to be large lithium-ion batteries, which come with high costs and the requirement for mined metals such as cobalt and lithium.

But a UK-based startup is looking to provide a cheaper, more efficient and more convenient method. RheEnergise is looking to revamp the way we approach pumped hydro-storage, one of the most widely used forms of renewable energy storage. 

Pumped hydro involves pumping water up a hill during times of cheap renewable power, and then letting it flow down the hill through power turbines when electricity demand is higher. Surplus power is stored as potential kinetic energy within reservoirs buried into hills.

Currently, pumped storage makes up around 90 percent of mechanical storage solutions worldwide, but as with other approaches, it has its downsides. Firstly, it requires extensive construction and engineering costs, as well as earth extraction and the damming and redirection of water. Pumped hydro also requires specific geographic considerations, most notably a hill high enough and steep enough to produce enough energy to make the system worthwhile. Although one Australian study identified 616,000 potentially suitable sites worldwide, these geographic considerations still limit the uptake of pumped hydro.

RheEnergise’s approach is to fundamentally change one of the most critical elements involved — the water. Instead of using water, the RheEnergise team has developed R-19, an environmentally benign mineral-rich solution which is around 2.5 times denser than water. By using a denser liquid within the reservoirs, more pressure is applied to the turbines, resulting in more power output. One significant advantage is that since more power is generated, the entire system can be smaller and installed on lower hills.

For example, the change in density largely correlates to a change in power output and scale reduction of the complex. Since the liquid is about twice as dense, it generates around double the power of water, meaning the pipes and reservoirs can be half as large. Taken all together, this means hills half as high as traditional pumped storage can also be used, potentially opening up 6,500 new sites in the UK alone. Altogether, this results in a reduction of construction costs, which generally make up 65 percent of any pumped hydro project, and less environmental destruction.

RheEnergise Demonstration Day – Canada from RheEnergise: Stephen Crosher on Vimeo.

This power-boosting potential of R-19 was recently confirmed during experiments in the summer of 2022, and the RheEnergise team is now moving forward with a demonstrator model close to Plymouth, UK. The current goal is to develop the first five-megawatt grid-scale facility by 2026, although ultimately RheEnergise suggest its approach could be scaled up to 50 megawatts in power.

AI-Model Aardvark Forecasts Weather Without the Need for Carbon-Emitting Supercomputers

AI-model Aardvark can predict weather faster and more accurately than existing systems—all while emitting thousands of times less carbon.

New Linux Code Could Reduce Data Centre Consumption by Five Percent

The operating system Linux powers the Internet—adding one new line of code improves efficiency and reduces data centres’ energy consumption.

Could Fungal Batteries be the Power Source of the Future?

Researchers from Empa have developed the fungal battery, a completely biodegradable battery created with 3D printing techniques.

Simplifying Scope 3 Decarbonisation with ClimateChoice 

Scope 3 emissions can make up to 90 percent of a business’s carbon footprint.  ClimateChoice helps companies understand and tackle them.

AI-Simulations Improve Aircraft Efficiency: The Solution the Aviation Industry Desperately Needs?

New software uses artificial intelligence to design more fuel-efficient aircraft. Will the technology sufficiently reduce aircraft emissions?

Renumesh router
© RENUMESH
How RENUMESH is “Greening” Uganda’s Internet Using Solar-Powered Routers

Using S618, an innovative solar-powered device, Ugandan firm RENUMESH is providing sustainable internet to the country’s “powerless” regions. 

Salt of the Earth: The Rise of Sodium-Ion Batteries

Sodium-ion batteries have come and gone out of fashion. But a new burst of enthusiasm for the lithium battery replacement could spell a promising future.

Are Conveyor Belt Roads the Freight Transport of the Future?

Japan’s autonomous autoflow road is being lauded as a climate-friendly cargo alternative. Will it live up to expectations?