Can Plastic Become Food? The ‘Food Generator’ Looking to Turn Our Waste Products into Edible Proteins

Microbial synthetic engineering has the potential to turn many of our waste products into useful commodities. One award winning project hopes to use it to cut down on pollution, and create food at the same time.

Author Mark Newton, 08.13.21

Researchers from two US universities have been awarded a one million EUR prize for creating a ‘Food Generator’ capable of transforming plastics into proteins.

Professor of bioengineering at the University of Illinois Urbana-Champaign, Ting Lu, and associate professor of biological sciences at Michigan Technological University, Stephen Techtmann, won the 2021 Future Insight Prize for a design which could potentially solve two problems with one solution: that of plastic waste, and food insecurity.

Professors Lu and Techtmann looked at ways of using microbes to turn inedible biomass, such as certain plants and unpalatable parts of foodstuff, into safe and nutritious food within one day. To do this, certain naturally occurring communities of microbes, such as bacteria and fungi, can be used to metabolise inedible material and convert into edible proteins. To further improve their performance and widen their potential applications, the microbes were also subject to microbial synthetic engineering, in which the gene circuits of the microbes are modified to result in different chemical reactions. These reactions can be used to turn waste into useful materials, such as food proteins.

They have dubbed their creation, the ‘Food Generator’ and while they can create bacterial biomass that is itself around 50 percent protein, they hope to take the concept further to produce more varied products. For example, with the aid of the reward, the team aims to create complex proteins containing a series of enriching additives, such as amino acids, polyunsaturated fats and vitamins.

Junk Food

Perhaps most groundbreaking of all, is the duo’s work in using synthetic materials themselves, such as plastic, as the basis of the Food Generator. We have previously covered bacteria that could be used to break down plastics, but often microbial growth on plastics, such as polyester, is too slow to be useful. To tackle this, Lu and Techtmann engineered depolymerization enzymes to be more efficient, improving their ability to breakdown plastics, including PET.

The current process converts plastics into oily compounds using heat and a reactor that deconstruct the plastic’s polymer chains. This oily-substance is then fed to a community of oil-eating bacteria to result in bacterial cells that are around 55 percent protein. It is the idea that one day, such technology, if used at scale, could cut down on pollution and increase food production.

It is also possible to turn waste stock into other substances, including chemicals such as gamma-aminobutyric acid, which has been used as a natural remedy for stress and anxiety. The ultimate goal of the Food Generator is to create a platform which can be customised to meet the needs and demands of various actors, whether they be industrial, agricultural or non-governmental.

However, the team also understands the Food Generator is not a silver bullet to the world’s pollution and food insecurity issues. Instead, they envision its food production capabilities to only be used to address a direct crisis, such as a famine or extreme climate event. Ultimately though, it is also possible a version of the Food Generator could also be developed for personal use in the home, or in various industrial processes. It is also possible, the very same technology could be applied to turning waste, plastic or otherwise, into products such as fuel.

The Future Insight Prize has been awarded by German science and technology company Merck since 2019, with previous winners including technology designed to improve multi-drug resistance, as well as pandemic protection.

Proteme: Can Invisible, Edible Nano-films Protect Our Fruit and Reduce Food Waste?

A large portion of our perishable foods never make it to the dinner plate. A French startup hopes their innovative protective nano-film can help keep fruit fresher, for longer.

New Study Suggests Your Food Scraps Could Become Jet Fuel of the Future

Many airlines have dedicated themselves to cutting their carbon emissions, but their fuel consumption and volume of flights continues to grow. New jet fuels are seen as one way of reducing their climate impact.

New Technology Uses Food Waste to Turn UV Light Into Renewable Energy

A technology called AuREUS , which uses waste materials to turn UV light into electricity, even without direct sunlight, has won the James Dyson Award’s first-ever Sustainability Prize.

Carapac: Shell Waste is Transformed Into a Biodegradable Plastic Alternative

Much of our plastic waste finds its way into our seas and oceans. An Australian startup has looked for a solution in the same place.

Could Industrial Fish Waste Become the Bioplastics of the Future?

We've produced and thrown away so much plastic waste, that by 2050, there might be more plastic than fish in the ocean. What if fish themselves could provide the source for a more sea-life-friendly type of bioplastic?

Can Floating Facilities Capture Carbon and Reduce Ocean Acification?

The oceans are the world's biggest natural carbon sink, but more carbon has created more problems.

A Seamless and Comfortable Public Transport System? Real-Time Data Could Make It Happen

Will my bus be on time? How full will it be? Is there still room for my bike? Real-time data and forecasts can not only help to align public transport with actual demand, but also make it more reliable and attractive for passengers.

Meet the Specialised Automated Drone That Can Swab for DNA in the Rainforest Canopies

Biodiversity field research is never straightforward — especially in the rainforest. However, a new automated drone is looking to make things a little easier.