Biomason: Can Bacteria-Built Cement Clean Up Construction?

Traditional cement is dirty, slow and unwieldy. A US-based startup hopes its new biocement can help change that.

Autor*in Mark Newton, 03.14.22

Translation Sarah-Indra Jungblut:

Cement is the lifeblood of urbanisation – especially for expanding metropolises in the Global South. However, although cement is a cheap, reliable building material, it’s also one of the dirtiest. Overall, production of cement contributes about eight percent of global carbon emissions – a huge amount for a single industry.

These carbon emissions derive from multiple sources. Firstly, cement requires large amounts of heat – requiring electricity, but the actual process of heating limestone to produce cement also directly releases carbon dioxide.

Biomason is a US-based startup looking to shake up this dynamic. Like other recent projects we’ve discussed, Biomason has turned to nature to inspire a new method of producing cement and concrete. Termed biocement, Biomason uses a similar process to how calcium carbonate is produced within coral reefs and shells. In essence, it is a reversal of the traditional method in which limestone is heated in order to extract its carbon.

Coral-Inspired Cement

To create its biocement, Biomason starts with recycled aggregate. This is usually small pieces of stone – in Biomason’s case, granite – which are then held together by cement to produce concrete. To this recycled granite a special strain of natural bacteria is added. The bacteria has been described as a wild-type strain found across the world that has been left non-modified by Biomason. Usually, such bacteria builds up cement-like materials over hundreds or even thousands of years. However, a special solution containing carbon, calcium and the nutrients is added to the bacteria, allowing it to bind together the aggregate in a matter of days.

Biocement seems to provide several distinct advantages over traditional Portland cement. Firstly, it requires no heat, the bacteria can get to work even at ambient room temperature. Meanwhile, while cement takes up to 28 days to cure to its full strength, the biocement is finished after only 72 hours. Furthermore, Biomason claims their cement is three times stronger than traditional cement and is 100 percent recyclable. For every kilogram of biocement used instead of traditional cement, one kilogram of CO2 that would otherwise be released is eliminated.

Currently, Biomason is producing a small number of their first product, dubbed bioLITH. This is a small brick-like tile which can be used for internal and external construction in a wide range of applications. Another advantage of the bioLITH is it is lighter than normal stone, making its transport and use easier and reducing carbon emissions from heavy transportation. It can also be used in exactly the same way as traditional building materials, meaning no new methods, training or tools are required.

Ensuring biocement can fit into preexisting construction and cement industries is one of Biomason’s primary goals. In order to speed up adoption and reduce scaling costs, the process of producing biocement could use preexisting concrete production facilities.

Biomason certainly has some big names interested in its products, most notably the US military. The Department of Defence Advanced Research Project Agency, DARPA, has provided Biomason with funding to take their idea even further and develop so-called Engineered Living Marine Cement, which uses a combination of self-sustaining natural marine microorganisms that can source their nutrients from seawater. This would result in a self-sustaining, self-healing cement ideal for underwater construction applications.

Another military application – the rather dramatically named Project MEDUSA – also hopes to use Biomason’s expertise to develop an agile cement product which can be used to quickly build concrete structures in remote areas, such as landing pads for helicopters and VTOL aircraft.

However, Biomason also has some civilian contracts in the pipeline. Retail giant H&M recently announced it planned to tile the floors of its stores with bioLITH blocks.

Identify Plants With the Flora Incognita App – And Support Important Biological Research

AI-supported plant identification app Flora Incognita provides users with the names of previously unknown plants, turning you into a citizen scientist.

Deep Green Data Centres Heat Swimming Pools in the “Perfect Symbiotic Relationship”

Deep Green uses waste heat from its data centres to heat swimming pools, reducing their carbon emissions and keeping them afloat as energy costs soar.

Torge Peters
Digitalisation Can Advance Sustainable Agriculture – Under Certain Conditions

Digitalisation has long since arrived in agriculture. But how do these developments contribute to environmental and climate protection? We present solutions.

Fish Doorbell in Utrecht: Why Thousands of People Are Waiting for Fish on the Internet

Fish live more safely in Utrecht thanks to a fish doorbell. The project not only helps fish on their migration paths, it also draws attention to the dangers of human infrastructure.

Why a Digital Twin of the Arctic Has “The Potential to be Game-Changing”

PolArctic, a start-up using modelling technology and artificial intelligence to create a digital twin of the Arctic, will map out existing climate impacts on the area – and predict new ones.

© Benjamin Lucks
The Klim Mobile App: Making Regenerative Agriculture Simple and Lucrative

In the Klim app, farms can record their regenerative agricultural measures. In return, they get knowledge, a community and funds to support their work.

Edible Electronics: Reducing Electronic Waste With Digestible Robots and Nutritious Drones

Ever heard of edible electronics? Sounds like a contradiction in terms, but it could be a solution to reducing electronic waste, among other benefits.

Vegan Meat: A Climate-Friendly and Healthy Alternative?

Meat substitutes are booming - but what are vegan substitutes actually made from? And, are they actually nutritious?