Deep Green Data Centres Heat Swimming Pools in the “Perfect Symbiotic Relationship”

Deep Green uses waste heat from its data centres to heat swimming pools, reducing their carbon emissions and keeping them afloat as energy costs soar.

Author Kezia Rice, 06.10.24

Translation Sarah-Indra Jungblut:

Exmouth Leisure Centre has a gym, sports classes and a 25-metre pool where locals come to swim laps. So far, nothing unusual. But beneath the swimming pool lies a 50-kilowatt data centre. Roughly the size of a chest freezer, it generates heat as it stores and processes data. This heat is then used to keep Exmouth’s swimming pool warm.

Matt Bagwell, Chief Marketing Officer at Deep Green, the company behind the data centre, describes this as the “perfect symbiotic relationship.” Swimming pools need heating – many are struggling to keep up with bills as energy costs soar – and data centres will produce heat wherever they are in the world. By installing a data centre beneath a swimming pool, Deep Green calculates that they save leisure centres such as Exmouth over £20,000 a year and reduce their carbon footprint by 25.8 tonnes.

As AI models become increasingly prevalent, our energy consumption will only increase, with Scientific American reporting that by 2027, the annual electricity consumption of AI servers will be greater than that of many small countries. But this creates a problem: data centres cause a lot of carbon emissions, with both the data processing and the cooling of servers responsible for this high energy consumption. There are a variety of startups tackling the problem of what to do with waste heat. In Sweden for example, the waste heat from data centres is being used to heat thousands of households, and in Germany, Windcloud uses heat from servers to warm a greenhouse which grows algae.

So how does waste heat from servers actually work?

The data centre from Deep Green is immersed in biodegradable mineral oil, which captures the heat the computers generate. A heat exchanger transfers heat from the oil to the water of the swimming pool, making it an ambient temperature perfect for bathers. The swimming pool’s existing gas boiler is only used when necessary to maintain this temperature.

How Deep Green heats a pool
© Deep Green

Data centres are responsible for a lot of the planet’s pollution

Climateiq reported that data centres generate more emissions than the aviation industry, while Deep Green calculated that the world’s data centres collectively consume half as much energy as the whole of Germany. But Bagwell describes how, outside of this industry, people rarely expect climate emissions to be so high from something we cannot physically see.

He gives an example: when you open TikTok or Instagram on your phone, how often do you consider the carbon emissions that come from your scrolling? “When we’re disconnected from something, we tend to do damage to it,” he continues, emphasising the need to understand the environmental impact of the online world.

Swimming pools get their heat for free

Deep Green currently has over 40 megawatts in planning stages – and they intend to heat swimming pools around the U.K. without it costing the leisure centres a penny. Not only does Deep Green provide the heat generated by its data centres for free, but it also covers the costs of installing its technology, instead earning profits by selling storage at their servers to companies requiring computing.


RESET asked Bagwell why their business model is structured like this. “Public assets like swimming pools need to stay open for people’s [mental and physical] health,” he says. “There’s a direct causal relationship between the availability of public assets like swimming pools and health outcomes.” In 2022, the BBC reported that 79 percent of leisure centres faced closure due to rising energy bills – for many of them, Deep Green’s innovation is a lifeline.

The reaction from leisure centres has been positive

“Initially our conversations are very attractive,” Bagwell says of that first call with a swimming pool that may soon host a data centre. But soon they get into practicalities. Deploying a data centre takes just three days; planning can take months. Despite this, countless swimming pools still want to get in on the scheme; after the launch of the first data centre in Exmouth, Deep Green was inundated with requests.

In numerical terms, Deep Green aims to expand to 1500 sites in the U.K., saving leisure centres £80,000 in heating bills and 125,000 tons of C02 per year. But Bagwell explains how “it’s not about the ones and zeroes.” Deep Green’s ambitions are higher than that; they want to “become a beacon of hope” and change how people feel about climate change, energy bills, and the cost of living crisis. As Bagwell puts it, “When you change heat economics by giving heat away, the whole game changes.” It becomes a game we might just win.

AI Learns Alchemy: Sol-AI to Find New Materials for Solar Systems

Researchers want to use the "SOL-AI" AI system to produce more efficient materials for photovoltaic systems. It's trained on a huge data set and can generate new materials based on the required properties.

Compensating for Carbon Emissions? Carbonsate Could Have the Answer

Are we burying our heads when it comes to climate change? German start-up Carbonsate is tackling the planet's excess CO2 by putting it underground.

© Crowd Impact
Crowd Impact Reduces Festivals’ CO2 Emissions by Providing Data on Attendees’ Transport Choices

The journey to a festival site is the biggest contributor to a festival’s CO2 emissions. Crowd Impact surveys attendees on how they arrived, giving festivals data they can use to incentivise more sustainable transport choices.

Consume Energy When It’s Cheap and Green With Dynamic Electricity Tariffs

When the wind blows and the sun shines, there is plenty of cheap, green energy. Tibber passes this on to customers with a dynamic electricity tariff.

How Digitalisation Can Help Neighbourhoods Share Electricity

More players in the market are key to driving the shift away from fossil fuels — and digitalisation plays an important role. However, digital technologies themselves are also energy-hungry. But there are ways to keep the additional energy consumption low.

100 Percent Renewable Energy Needs Efficiency and Intelligence. Interview with Severin Beucker (Borderstep Institute)

How can we successfully transform our energy system towards climate neutrality? For Severin Beucker, co-founder of the Borderstep Institute, the most important prerequisites are efficient and intelligent grids and consumers.

© Torge Peters
How to Accelerate the Energy Transition Using Digital Technologies

Which roles can digital technologies play in the transformation of our energy system towards using 100 percent renewable energy? In the latest "Energy Transition – The Future is Networked" Greenbook, RESET.org has researched solutions and interviewed experts. Here are the results.

Report on the Price of Fossil Fuels Suggests a Rapid Transition to Renewables Can Result in Huge Savings

A study examining the historic prices of fossil fuels and renewable technologies suggests coal, oil and gas might not actually be as cheap as commonly thought.